The Stability Radius of Fredholm Linear Pencils

نویسنده

  • C. BADEA
چکیده

Let T and S be two bounded linear operators from Banach spaces X into Y and suppose that T is Fredholm and dimN(T − λS) is constant in a neighborhood of λ = 0. Let d(T ;S) be the supremum of all r > 0 such that dimN(T − λS) and codim R(T − λS) are constant for all λ with |λ| < r. It is a consequence of more general results due to H. Bart and D.C. Lay (1980) that d(T ;S) = limn→∞ γn(T ;S) , where γn(T ;S) are some non-negative (extended) real numbers. For X = Y and S = I, the identity operator, we have γn(T ;S) = γ(T ), where γ is the reduced minimum modulus. A different representation of the stability radius d(T ;S) is obtained here in terms of the spectral radii of generalized inverses of T . The existence of generalized resolvents for Fredholm linear pencils is also considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Stability Radius of Linear Operator Pencils

Let T and S be two bounded linear operators from Banach spaces X into Y and suppose that T is Fredholm and the stability number k(T ;S) is 0. Let d(T ;S) be the supremum of all r > 0 such that dimN(T − λS) and codim R(T − λS) are constant for all λ with |λ| < r. It was proved in 1980 by H. Bart and D.C. Lay that d(T ;S) = limn→∞ γn(T ;S) , where γn(T ;S) are some non-negative (extended) real nu...

متن کامل

Stability of essential spectra of bounded linear operators

In this paper‎, ‎we show the stability of Gustafson‎, ‎Weidmann‎, ‎Kato‎, ‎Wolf‎, ‎Schechter and Browder essential spectrum of bounded linear operators on Banach spaces which remain invariant under additive perturbations‎ ‎belonging to a broad classes of operators $U$ such $gamma(U^m)

متن کامل

Stability Radii of Linear Discrete{time Systems and Symplectic Pencils

In this paper, we introduce and analyze robustness measures for the stability of discrete-time systems x(t+1) = Ax(t) under parameter perturbations of the form A ! A + BDC where B; C are given matrices. In particular we characterize the stability radius of the uncertain system x(t+1) = (A+BDC)x(t), D an unknown complex perturbation matrix, via an associated symplectic pencil and present an algo...

متن کامل

Applying fuzzy wavelet like operator to the numerical solution of linear fuzzy Fredholm integral equations and error ‎analysis

In this paper, we propose a successive approximation method based on fuzzy wavelet like operator to approximate the solution of linear fuzzy Fredholm integral equations of the second kind with arbitrary kernels. We give the convergence conditions and an error estimate. Also, we investigate the numerical stability of the computed values with respect to small perturbations in the first iteration....

متن کامل

Application of ‎F‎uzzy Bicubic Splines Interpolation for Solving ‎T‎wo-Dimensional Linear Fuzzy Fredholm Integral ‎Equations‎‎

‎In this paper‎, ‎firstly‎, ‎we review approximation of fuzzy functions‎ ‎by fuzzy bicubic splines interpolation and present a new approach‎ ‎based on the two-dimensional fuzzy splines interpolation and‎ ‎iterative method to approximate the solution of two-dimensional‎ ‎linear fuzzy Fredholm integral equation (2DLFFIE)‎. ‎Also‎, ‎we prove‎ ‎convergence analysis and numerical stability analysis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000